Classification of Factorable Surfaces in the Pseudo-galilean Space

نویسندگان

  • Muhittin Evren Aydin
  • Alper Osman
  • Mahmut Ergüt
چکیده

In this paper, we introduce the factorable surfaces in the pseudo-Galilean space G3 and completely classify such surfaces with null Gaussian and mean curvature. Also, in a special case, we investigate the factorable surfaces which fulfill the condition that the ratio of the Gaussian curvature and the mean curvature is constant in G3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space

In this paper we describe a special class of translation surfaces in a pseudo-Galilean space. We analyze translation surfaces having constant Gaussian and mean curvatures, as well as translation Weingarten surfaces. Mathematics Subject Classification: 53A35, 53A40

متن کامل

Classification of Rotational Surfaces in Pseudo-galilean Space

In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we characterize rotational surfaces in G3 in terms of the position vector field, Gauss map and Laplacian operator of the second fundamental form on the surface.

متن کامل

Linear Weingarten Rotational Surfaces in Pseudo-Galilean 3-Space

In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we classify linear Weingarten rotational surfaces in G3. A linear Weingarten surface is the surface having a linear equation between the Gaussian curvature and the mean curvature of a surface. In last section, we construct isotropic rotational surfaces in G3 with prescribed mean curvature...

متن کامل

Surfaces of Constant Curvature in the Pseudo-Galilean Space

We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of...

متن کامل

A characterization of curves in Galilean 4-space $G_4$

‎In the present study‎, ‎we consider a regular curve in Galilean‎ ‎$4$-space $mathbb{G}_{4}$ whose position vector is written as a‎ ‎linear combination of its Frenet vectors‎. ‎We characterize such‎ ‎curves in terms of their curvature functions‎. ‎Further‎, ‎we obtain‎ ‎some results of rectifying‎, ‎constant ratio‎, ‎$T$-constant and‎ ‎$N$-constant curves in $mathbb{G}_{4}$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015